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SUMMARY 

We consider in this paper the numerical solution of the Falkner-Skan differential equation, modelling 
under some similarity assumptions the boundary layer equation. We look for the extremal solution of 
this third order differential equation. The methods we use are basically the Newton method with a 
shooting process, which is coupled with a continuation method: they allow us to follow the solution arcs 
which contain regular and turning point solutions. 
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1. INTRODUCTION 

The Falkner-Skan equation is obtained from the dimensionless Prandtl’s equations, in which 
is introduced a similarity assumption. It consists of a non-linear third order differential 
equation I f”+ff”+ p(1- f”) = 0 

f(0) = f’(0) = 0 
f’(m) = 1 

We study numerically the solutions of this equation, satisfying the initial condition: 

p‘(0) = a! 

The solutions can be then characterized by their positions in the plane (a!, p). 
In section 2,  a Newton method associated with a shooting process is used to find the 

regular solutions. 
The introduction of the continuation equation, which consists of an arc-length constraint, 

allows us to treat simple turning points as regular solutions of the new problem. It is then 
quite easy to follow the arcs of solution containing regular and turning point solutions. 

Section 4 presents numerical experiments. 

1 . 1 .  The Falkner-Skan equations-theoretical results 

In this section, we present the governing boundary layer equations, in the physical (x, y) 
plane. They correspond to a first order approximation of the incompressible Navier-Stokes 
equations in two dimensions. More precisely, the dimensionless Prandtl’s boundary layer 
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equations can be written as follows: 

Here p is the pressure, and (u, v) is the velocity field (referred to the external velocity u,(x)) 
which satisfies the continuity equation 

The boundary conditions are given by natural conditions at the wall, i.e. for y = 0, and by 
matching with the external flow: 

(3) I u(x, 0) = 0 

u(x, 4 = um(x) 
(x, 0)  = Z),all(X) 

An initial condition is given by: 

4 0 ,  Y )  = +(Y) (4) 

In the special case of incompressible flow, a classical similarity assumption’ applied to the 
set of Prandtl equations leads to 

f”+ff”+@(l-f’2)=0 (5  1 
in which the function f’ of the new similarity variable 7 E [0, +m) constitutes a dimensionless 
form of the longitudinal velocity component, referred to the external velocity u,. The 
function f(q) is proportional to the local boundary layer thickness. The parameter @ plays a 
fundamental role. In a mathematical sense, it may take any real value, and can be considered 
as a ‘bifurcation’ parameter. Note that the solution in the special case @ = 0 is called the 
Blasius solution. 

Finally, the boundary conditions associated with (5 )  are 

f(0) = f’(0) = 1 
f’(i-4 = 1 

1.2. Basic results 

Equations ( 5 )  and (6) were first introduced by Falkner and Skan in 1931.2 One of the 
earliest studies, due to Hartree in 19373 gave the additional condition: 

V t 2 0 ,  O?zff ( t )5 l  

in order to preserve a physical meaning. 
First, it is convenient to define precisely the different types of solutions of the Falkner- 

Skan equations which have appeared in the previous works (see the discussion in Reference 
4). 

1.2.1. Definitions 

A classical solution of ( 5 ) ,  (6) is one for which f’(t)>O for t > O .  
Definition 1 



FALKNER-SKAN EQUATIONS 835 

Definition 2 
A reverse flow solution of (3, (6) is one for which there exists a 7 > 0 such that f'(7) < 0. 

Definition 3 

that l f ' ( ~ ) 1  > 1. 
An overshoot solution of (9, (6) is a reverse flow solution for which there exists a 7 such 

1.2.2. Solutions without overshoot. There are two cases to consider according to the sign of 
p, i.e. if there is an adverse pressure gradient or not. 

1.2.2.1. The case p r o  
Weyl' established the existence of a classical solution for 6 fixed (see Reference 6 for 

details). Global uniqueness holds only for 0 5 p 5 1 in which case f'( t )  > 0 whenever t > 0.7*8 
For p = 0, the Blasius solution (without pressure gradient) corresponds to the unique value 
of a such that a = 0.49, where a = f"(0). 

1.2.2.2. The case < O  
For p* < j3 < 0, there exists an infinite number of solutions, bounded by two extremal 

solutions. p* = -0.198838& is a turning (bending) point where the extremal solutions 
cohcide. The upper (i.e. f"(0) 2 0 )  extremal solution is a classical one with f'(t) 1 
e~ponentially.~ The lower (i.e. f"(0) 5 0) extremal solution was first obtained by Stewartson*' 
and investigated by Hastings;" it is of the reverse flow type, with f'(t) + 1 exponentially. All 
solutions between the extremal ones are characterized by an algebraic convergence of 
f'(t) + 1. 

The minimal extremal branch ends at p = 0 which is a singular limit point.'* 

1.2.2.3. The turning point 6" 
The value p* has been computed numerically by Stewartson13 and its existence has been 

discussed by Iglish and kern nit^.^ In a physical sense, the point (p*,  a* = 0) links reverse 
flow solution branches and solutions branches without separation in the (a, p )  plane. 

Heuristically, p" is a turning point in the following sense: for p >p* ,  locally there exists 
two extremal branches of solution, and for p < 0" there is locally no extremal solution. 
Banks and Drazin14 have initiated a local study near p = p". A continuation process has 
allowed us to follow the branch of classical solutions, especially through the turning point. 

1.2.3. Overshoot sozutions. For p < @*, Stewartson has shown that all possible solutions 
are of the overshoot type. Numerical studies have revealed branches of overshoot solutions. 
The solutions of the branch labelled n, present n extrema as well as n overshoots; the 
number of overshoots is defined precisely as the number of zeros of the equation f '  - 1 = 0. 

Libby and Liux5 calculated some of these branches. The last point they found for the first 
branch was p = -1.0060 and f"(0) = -1.09. For this solution, f '  has exponential decay. So it 
does seem (numerically) that the first branch with overshoot ends at p = -1. The last point 
that Libby and Liu found for the second branch with overshoot was p = -1.9458, f"(0) = 

Following this idea, we calculated numerically some branches of extremal solutions. The 
numerical analysis that we did leads to a precise knowledge of seven branches, as well as 
their behaviour as 

Some theoretical insight has been given by Troy16 who established the existence of an 
infinite sequence of negative pi for which there exist solutions with j overshoots and 
exponential convergence of f '  -+ 1. 

-1.47. 

goes to -1. 
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2. NUMERICAL METHODS WITHOUT CONTINUATION PROCESS 

2.1. Statement of the problem 

We are interested here in the numerical solution of the initial value problem 

(S, 1 1 f"'+ff++(l-f'2)=0 

f(0) = f'(0) = 0 
f"(0) = a 

and we are seeking the solutions f of (S,) satisfying the so called extremal condition (see 
section 1.2.2.2): 

q-+m lim f f ( q )  = 1 (7) 

which amounts to specifying an admissible domain for a. 

differential system namely: 
2.1.1. Solutions of system (SJ, satisfying (7). System (S,) is equivalent to a first order 

such that 

with the initial condition 

YI(0) = 0, Y 2 0  = 0, Y3(0) = a (9) 
Among the possible solutions of (8), (9), we shall select the solutions Y, = {yl,,, y2,,, y3+}, 
for which the extremal criterium is satisfied: 

y2(4  - 1 = 0 

Remark. In practice, for the numerical study, we shall replace the previous relation by 

y,(A) - 1 = 0 
with A >>1. 

Define next F :  R 4 R by 

0 -+ F ( a )  = Y2.,(A) - 1 (11) 
where Y, = {y,,,, y2,,, y3,,} is a solution of system (8) corresponding to the initial condition 

Then solving (S,), taking into account the condition (7), is equivalent to finding the roots 
(9). 

of F in R, namely to solving in 08 the equation 

F ( a )  = 0 (12) 

This last equation can be solved by a Newton's method: if the derivative of F with respect to 
a does not vanish at a root a* of F, the sequence (Yk defined by: 

a k + l =  ak -(F'(%))-*F(%) (13) 

converges to a*, if ag belongs to a sufficiently small neighbourhood of a* 
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our case, the sequence {ak}k may be constructed as follows: 

(14) 
a 

a k s l  = a k  -(Y2,ak(A)- 1)/-(~2,a~(A)) 

addition, by the existence theorem of Peano, if Y is a solution of the differential system: 

Y = 9 ( Y )  and Y(0) = (0, 0, a)' 

aY - is a solution of the first order differential system 
acu 

X = Jac (9)X 
the initial condition 

X(0)  = (0, 0,l)' 

where Jac (9) denotes the Jacobian matrix of 9. 
a 

Using this property we can write - (y2,JA)) as 
a a k  

where 

x2,ffk 

'3,mk 

-Xl,akY3,a* - Y l , a k X 3 , a k  + 2@Y2,akX2,01k 

with the initial conditions 

1 X,,,,(O> = 0 
X2,at (0) = 0 

x3,ak(o) = 1 

2.1.2. Extremal solutions: numerical treatment. The notion of extrernal solutions was 
introduced for the Falkner-Skan equation by Hartree.3 He proposed considering extremal 
solutions for p* < p < 0 only; they can be connected then to the unique solution for p 2 0; 
this will also ensure the continuity of the set of the solutions in the plane (P,f"(O)), in a 
neighbourhood of zero. In practice this asymptotic behaviour may be characterized by the 
property f '  + 1 exponentially. 

In 1953, Stewartson13 proposed to refine Hartree's criterion by considering the solutions 
defined by 

f =  lim fA 
A++- 

where fA is a solution of the Falkner-Skan equation satisfying the initial conditions together 
with the final condition 

f'(O)=O, f a ( O ) = O ,  fL(A)=l  for A<m 

With this approach, Stewartson rediscovered the reattached flows of Hartree for p* < p, and 
showed the existence of a branch of separated solutions for p in the same domain. 
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We call any solution which converges to 1 exponentially at infinity an extremal solution. 
The main interest of such solutions is that they correspond to physically stable solutions. In 
practice, we characterize these extremal solutions by the exponentially decay of F ( a )  with 
respect to A, where F is defined through (12). 

An extremal solution will then minimize with respect to a the quantity 

Aa = (YZ,, (A) - 1)’ = F2(a)  

the scale factor a corresponding to extremal solutions will maximize !!& and can be 
aa 

characterized by: 
F ( a )  = 0 

2.2. Numerical method 

We shall now discuss a general method for the numerical search for extremal solutions of 
the Falkner-Skan equation. 

The method is a shooting method, called the adjoint method. It allows computation of all 
the terms in the Newton iteration (14). For a given value of f”(O), we integrate the 
Falkner-Skan system ( S , ) ;  this computation provides a value of f’ at the final abscissa A;  a 
test is then made to compare this last value with 1; if the difference f’(A) - 1 is too large, a 
correction is made on f”(0). 

2.2.1. The adjoint method: review. Let us consider the general differential system: 

yi = gi(yl, y,, . . . , yn, t), for i = 1, . . . , n (16) 
where 

yi belongs to %“(R) 

gi belongs to %“(R”) 

with the boundary conditions 

y i ( to)  = ci, 
~ , + ~ - , ( t f )  = c , + ~ - ~ ,  m = 1,2,  . . . , n - r 

i = 1, .  . . , r 

Using a Taylor expansion, we obtain from (16) the linear variational system 

s,ii = C - agi 6yi, i = I , .  . . , n 
j = 1  a Y i  

which has as its adjoint system 

Then we obtain the condition 

which connects the adjoint and variational systems. 
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The adjoint method is an iterative method on yi(to) for i = r + 1 to n ;  let yik’(to) be the 
value of yi at the kth iteration, at the value to, the solution yik’ satisfies 

y i k )  = gi(y:”’, y p ,  . . . , y ”  ( k )  , t) 

where y$“’(tO) is known for i = 1 to n. 

then we compute 
With the help of a numerical integration method, we determine the final values yrk’($); 

6yit’(tf) = c, -YE’($), for rn = I,. . . , n - r 

In order to compute 6E)(ro) for i = r +  1 to i = n, we shall integrate ( n  - r )  times the adjoint 
system (18) with the condition (19); the values Gyik’(t0) are the solutions of the following 
linear system on the interval (4 ,  to) (backwards integration): 

xim’($) = 8i,im, is the Kroneker symbol I 
The condition (19) enables us to write 

f xim’( t0)  ~y!k’(to) = ay~’( t f ) ,  rn = I, . . . , n - r 
i = r + l  

We then obtain the following system: 

and as an initialization for the next integration, we take the value 

y ~ k + l ’ ( t o ) = y $ k ’ ( t O ) + ~ y $ k ) ( t O ) ,  for i = r + 1  to i = n  

(see Reference 17). 

2.2.2. Application to the Falkner-Skan equation. We shall consider the canonical form of 
the system ( S a ) ,  namely 

(23) I Y1= Y2 

Y2 = Y3 

Y3 = -Y l Y 3  - P (1 - Y 3 
with the initial condition 
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The corresponding variational system is 

0 [;:I= [:3 

[;2](0)=[: 1 

and the backward adjoint system is 

with 

With the help of (19) and (22) we obtain the relation 

~ $ ~ + " ( 0 )  = yik'(0) + (1 - yf"(A))/~$"'(0) (27) 

which defines the iterative process. 
The algorithm is stopped when the extremality criterion reaches a given accuracy. The 

integrations of the differential systems are approximated by a fourth order Runge-Kutta 
method. 

2.2.3. Performances of the method. The adjoint method allowed us to determine numeri- 
cally the first seven branches of super solutions. This method is therefore effective, but it 
cannot be adapted to an automatic computation of the branches. Indeed, the natural 
progression along a constant path Ap cannot be effective when the slope of the branches is 
large. The study of a branch has to be done point by point to adjust the path Ap at each step 
of the computation. Numerically, it seems that all the branches with overshoots have the 
same singular limit points as p increases to -1. 

3.  CONTINUATION METHODS AND THEIR APPLICATIONS TO 
THE FALKNER-SKAN EQUATIONS 

The previous section discussed a method for finding a solution of the Falkner-Skan 
equations for a fixed value of p. In this section we discuss methods for finding nearby 
solutions for different p to form solution branches. We describe a continuation method for 
solving non-linear problems and we show how this method can be adapted to the numerical 
computation of branches of extremal solutions of the Falkner-Skan equations. We show that 
this method is well suited to bifurcation problems, especially to the computation of turning 
points. 

3.1. Solution of non-linear problems 

The approximated problems are to find, in some finite dimensional space, the solutions of 
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the following problem: 

F(u) = 0 (28) 
where F is a non-linear operator defined on R". 

it can be written in the case of differentiable F, as follows: 
A general method, used to solve this kind of problem, is the well-known Newton method; 

uo given, 
u"+' is computed from U" by: 

This method can be easily implemented only in the special case where F' is invertible, for 
each u";  moreover it requires the computation and the inversion of the matrix F'(u") at each 
step of the algorithm. Nevertheless it remains efficient and easy to use, in many cases; in 
particular, if u* is a simple root of (28), and, if uo is chosen in a suitable neighbourhood of 
u*, the convergence of the sequence {u"}, defined by (29) is quadratic. 

Remark. We can also use a least square method, which consists of minimizing the 
functional defined in [w" by 

J ( u )  = IIF(U>ll' (30) 

where 11.11 is a convenient norm in R". 
Problem (28) is then transformed into an optimal control problem" and the minimization 

problem can be solved by a conjugate gradient algorithm.1g-21 This solution is efficient in 
general cases since it avoids the computation and the inversion of the matrix F'(u"); 
nevertheless it has been rejected here since the matrix F'(u") is a 2 X 2 matrix invertible by 
hand. 

3.2. Continuation methods 

3.2.1. Statement of the problem. We shall consider a class of non-linear problems depend- 
ing upon a real parameter A :  

G(u, A) = 0 (31) 

where G : B X R + R, and B is a Banach space (in practice, for the solution of approximated 
problems, B = R", and here N = 2). 

Definition 4 

differentiably on a parameter s; we set 
A regular branch of solutions is a family of solutions of (31), depending twice continuously 

ra,b = {(u(s), A(s)), sa s sb }  (32) 

Our purpose is to compute the regular branches of solutions of problem (31). 
The standard approach is almost invariably to use A, one of the naturally occurring 

parameters of the problem, as the parameter defining solution arcs, u(A). Indeed, if for 
A = Ao, we get an isolated solution, uo, i.e. if the linear operator 

Gt  = G u ( ~ o ,  Ao) (33) 
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is an isomorphism of B onto itself and if the operator G is continuously differentiable in a 
neighbourhood of the solution (A,, u,), the implicit function theorem shows the existence of 
a regular arc of solutions: u = u(A), for h belonging to a suitable neighbourhood of A,. 

Therefore, for h given sufficiently close to A,, we may solve problem (31) just as problem 
(28). 

These procedures however may fail or encounter difficulties (slow convergence for 
example) close to a non-isolated solution. 

The basic idea to circumvent this, is due to Keller22 and consists of using a normal 
parametrization 

u = u(s) 

A = A(s) 

which is defined using an auxiliary equation added to the system to get the problem 

G(u(s ) ,  A(sN = 0 
N u b ) ,  U s ) ,  s) = 0 

where N : B x R2 4 R defines the normal parameter s, on the arc of solutions. 
Introduce then the new unknown x E X  = B x R and the operator P : X x R -+ X by 

X b )  = (u(s) ,  h(s) )  
and 

(34) 

(35) 

The new problem is to find the solution, x ( s )  of 

P ( x ( s ) ,  s) = 0 (37) 
The main interest of this new formulation is that the ordinary limit points of (31) become 
regular solutions of (37) (see References 22 and 23 for more details). Let us make precise 
the concept of a limit point: we have the following: 

Definition 5 

point if 
Let {u,, A,}€ B XR be a solution of problem (31). We say that {u,, A,} is a normal limit 

where ~, (resp. A,) denotes the derivative of u with respect to s, 

(39) 

The main justification of arc length continuation follows from 

Proposition 1 

Reference 23. 
Any normal limit point of problem (31) is a regular solution of (37). For a proof, see 
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As a conclusion of this subsection, we have seen that any solution arcs of problem (37), 
composed of regular or turning points can be computed by a continuation formulation and a 
Newton method. For approximations of the arc length constraint, see References 24-26. 

3.2. Numerical solution of the Falkner-Skan equation 

We want to find the set of extremal solutions of the Falkner-Skan equation, which 
amounts to finding the branches of solutions {a, p} ,  where {a, p }  belongs to E, defined to be 
the set of {a, p},  a, p ER such that there exists at least one solution of the initial value 
problem 

I y'"+ yy"+ P(1- y'2) = 0 
y(0) = y'(0) = 0 
y"(0) = a 

with the extremality condition 

y minimizes the quantity A = (y'(A) - 11 (42) 

The methods proposed in section 2 allowed us to find solutions of (41) and (42) for a or p 
fixed; the iterative method acts then on one of the two parameters a or p. We meet then 
some difficulties in the following two cases: 

(a) The solution {a, p }  corresponds to a turning point. 
(b) For a fixed value of a (resp. p) ,  there exist solutions for at least two narrow values of 

p (resp. a). 
It appears then necessary to implement continuation methods to overcome these difficulties. 

3.2.1. A continuation-Newton method. Using a normal parametrization, we transform the 

Find {a, p }  in R2, satisfying a = a(s), p = p(s),  for s E [so, s,] and such that 
previous problem into the following: 

where {yl,  y2, y3} satisfies the canonical system 

Y(O)= y2(0) = 0 I::3 I 3  
(44) 

Here, the second equation of (43) is the arc length constraint. 

(44) will be integrated by a fourth order Runge-Kutta method. 

two points will provide the path As, between two consecutive solutions on the branch, and an 
initialization point for the following solution. 

The numerical solution can be done by a Newton method. The ordinary differential system 

In order to compute the next point of a branch, we use two solutions on the curve: these 
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Moreover, the knowledge of the two previous solutions gives as possible approximation of 
the arc-length constraint: 

where M ,  : {a1, PI} and M2 : {a2, p2}  denote the two previous solutions on the branch. This 
approximation corresponds to a first order approximation of &(s) and b ( s ) .  

The Newton method applied to the solution of the problem 

may be written as follows: 
~ ( p + l )  = ~ ( p )  - (F’(M~))-~F(W) 

where Ff(M(p)) denotes the Jacobian matrix of F, at the point = (aCP’(s),  @‘”’(s)). 
We have 

d G  aG 

aN d N  - -  
aa ap 

(47) 

The computation of M(p+l) entails the inversion of the Jacobian matrix, F’; in this case, 

First, let us compute the matrix, Ff(M‘P’); we have 
this computation step is particularly simple: the 2x2  matrix is invertible by hand. 

aN dN aG aG 
aa ap aa ap The evaluations of - and - are obvious; to compute the values of - and -, we 

differentiate system (45) with respect to a and p to get (see section 2.2.2) 

where z2 is the solution of the differential system 
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with the initial data 

aG 
-= w2(A) ,  where w2 is the solution of the differential system 
ap 

with the initial data 

We then have to invert the 2x2  matrix, F‘(W) and set 

M(pfl) 7 M(p) - ( F ’ ( W ) ) - l F ( W )  

aG aG a~ a~ 
aa aa act aa where the quantities G, N, -, -, -, - are evaluated at the point M(p) = (a(p),  p(p)). 

The algorithm is stopped when both the extremality criterion and the continuation 
constraint reach a value less than a given precision parameter. If the continuation constraint 
is difficult to satisfy, the arc-length path As is automatically reduced. 

4. NUMERICAL EXPERIMENTS 

4.1. Solutions without overshoot 

We have seen in Section 1.2.1 that the arc of solutions which does not present any overshoot 
points is composed of regular solutions in the plane (a, 6) and of two singular points, namely 
the turning point (a*, p*) corresponding to the value a* = 0, and a singular limit point 
a = p = 0. To compute the branch of solution going through the turning point, we have used 
the continuation-Newton method described in Section 3.3.1. 

As initializer points, we chose two solutions (a1, el)  and (az, p2) given by Keller27 and 
corresponding to positive values of a and p. An approximate value of p* has then been 
obtained: 

@* = -0.19884 

and the computed branch going through this point reaches the value 

a,= -0.062131 
p, = -0.018451 

Beyond this value, the computation was stopped by overflow; this behaviour is similar to the 
case where a and are non-positive and when there are no solutions. 

The solution branch is shown in Figure 1; in Figure 2 we show the evolution of the speed 
profile f ‘  when a and p go to zero with negative values, towards the limit point (0,O). 
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Figure 1. Solutions without overshoot 
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Figure 2. Evolution of the speed profile when goes to zero 

I. 
Figure 3. Seven branches of extremal solutions 
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X 

Figure 4. Shape off’ on the first branch: 0 = -1.1, a = -1.04667 

Figure 5. Shape off’  on the second branch: = -2.3, a = -1.088959 

4.2. Branches of extremal solutions with overshoot 

Using both methods described in Sections 2 and 3, we have obtained some interesting 
results concerning the first seven branches of extremal solutions. The global results are 
shown in Figure 3 in the (a, p)  plane. Each branch can be characterized by the number of 
roots of the equation f‘- 1 = 0; this can be observed in Figures 4-10, where the shape of the 
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4 .  

4 

0 .  

Figure 6. Shape of f '  on the third branch: 0 = -2 .3 ,a  = -1.668403 

X 0 .  16. 

Figure 7.  Shape off' on the fourth branch: = -3.55, a = -2.01556 
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1. 

c 
I .  x 0. 

Figure 8. Shape off,' on the fifth branch: f i  = -5.099999, (Y = -1.81752 

16. 
0. X 

Figure 9. Shape off'  on the sixth branch: p = -6, (Y = -2.12681 
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Figure 11. Evolution of overshoots on the second branch: 1. p = -2.4, a = -0.49018; 2. 0 = -2.2, a = -1.30730; 
3. p=-2,  c~=-1.46101; 4. @ = - l ’ 8 ,  a=-1.45781; 5. p=- l .6 ,  (~=-1.39359;  6. p = - l . 4 ,  a=-1.30476; 7. 

p = -1.2, a = -1.20146 

speed f’  is represented for each branch. In addition, for a given branch of extremal solutions, 
we can study the behaviour of f’ when p goes to zero. 

For example, in Figure 11, we have represented the solution f’  for seven values of (a, p )  
on the same branch. We can observe that the amplitude of the overshoot grows as p goes to 
zero, and the position of the overshoot progresses to the right. It follows that the con- 
vergence of f’  to the value f’  = 1, may appear for a larger value of the abscissa; this implies 
numerical difficulties concerning the choice of the large scale A. 
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Figure 12. Three solutions for 0 = -2.30: x x x 01 = -1.08896; - - -  LY = -1.66840; . . . . a = -1.68599 

Concerning the asymptotic behaviour of the branches, we can see in Figure 3 that the 
different branches join along a ‘limit branch’ when p goes to zero with negative values. 

It is then of most interest to look, for a fixed value of 0, at the different solutions on each 
branch. 

We can see in Figure 12 that even for two nearly equal values of a, we have obtained (see 
(2) and (3)) two solutions quite different. This result seems to confirm the asymptotic 
convergence of the branches when p goes to zero. 
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